GYSOM Methodology • Mark Hallam

GYSOM
Get Your Skates On Mate

A Context Engineering Methodology
Introducing Prompt Compilation for Autonomous AI Code Execution

Mark Hallam
February 2026
Version 1.0 • MIT License

Abstract
AI coding agents have transformed software development, yet most practitioners interact with them using ad hoc, conversational prompts that degrade as project complexity grows. GYSOM (Get Your Skates On Mate) is a context engineering methodology that introduces prompt compilation as a new pattern for structuring AI agent execution. The human provides intent and decisions upfront, and GYSOM compiles that input into machine-executable session packages that an AI coding agent can run autonomously from start to finish, with no further human intervention required.
The methodology introduces five novel contributions to the context engineering discipline: upfront decision harvesting that eliminates mid-execution human bottlenecks; context-aware session decomposition with explicit size budgets to prevent context window exhaustion; DAG-based parallel execution within a single agent instance using native subagent capabilities; a conflict matrix protocol that guarantees zero file collisions between concurrent sessions; and a structured JSON handoff schema that enables reliable inter-session state transfer. This paper presents the complete methodology, situates it within the emerging landscape of context engineering and spec-driven development, and provides the full specification under MIT license for community adoption.

1. The Problem: Conversational Prompting Doesn’t Scale
The dominant paradigm for AI-assisted coding is conversational: a developer describes what they want, the agent produces code, the developer reviews it, requests changes, and iterates. This works well for small tasks but introduces three failure modes as projects grow in complexity.
Context window exhaustion. Modern AI coding agents operate within fixed context windows. A single prompt describing an entire application’s architecture, data model, API surface, frontend components, testing strategy, and deployment configuration will inevitably exceed these limits. The result is truncated output, lost coherence, or session failure partway through execution. Practitioners work around this by manually breaking work into smaller pieces, but without a formal decomposition method, they either create sessions that are too large (and fail) or too small (and lose cross-session context).
Mid-execution decision bottlenecks. Agents frequently encounter ambiguity during execution and pause to ask the developer for clarification. Should the API use REST or GraphQL? Which authentication provider? What happens when a user submits an empty form? Each question blocks the agent, breaks its flow, and forces the developer to context-switch from whatever else they were doing. In a complex project, dozens of these micro-decisions accumulate into hours of interrupted execution.
Sequential execution of parallelisable work. Most developers instruct their AI agent to build features one at a time, even when those features share no files and have no dependencies on each other. A user authentication module, a product catalogue API, and a frontend navigation shell could all be built simultaneously, but without a dependency analysis framework, developers default to sequential execution and leave substantial time savings on the table.

2. The GYSOM Methodology
GYSOM addresses these failure modes through a context engineering approach that treats the developer’s project description not as a conversation starter but as source code to be compiled. The methodology introduces prompt compilation: a five-phase pipeline that transforms human intent into autonomous agent execution.
2.1 Phase 1: Decision Harvesting
When a developer describes a project, GYSOM’s first action is to extract every decision that would normally surface as a mid-execution question. Technology choices, design preferences, business logic edge cases, scope boundaries, integration specifics, and naming conventions are identified and presented as a single batch with recommended defaults.
The developer answers once. After that point, no further human input is required or expected. This is the methodology’s most counterintuitive principle: rather than treating AI interaction as an ongoing dialogue, GYSOM treats it as a single-transaction compilation. The human provides complete input; the system produces complete output. The parallel to traditional compilers is deliberate: a C compiler does not pause during linking to ask the programmer which memory allocation strategy they prefer.
2.2 Phase 2: Dependency Analysis and Session Decomposition
With all decisions locked, the methodology analyses the full project as a Directed Acyclic Graph (DAG). Every task is identified, its dependencies mapped, and the graph is validated for circular references. Tasks are then grouped into execution layers where all tasks within a layer can execute simultaneously because they share no file dependencies.
The DAG is then decomposed into session packages, each sized to complete reliably within a single agent context window. The sizing constraints are specific and empirically derived: each session targets 15–25 files of creation or modification, no more than 2,500 words of execution directives, and no single file specification exceeding 300 words. These limits were established through iterative testing to find the maximum session size that reliably avoids context window degradation in Claude Code’s subagent architecture.
2.3 Phase 3: Session Package Generation
Each session package is a self-contained execution prompt structured with six mandatory sections: a header declaring the session’s layer, dependencies, and scope estimate; compressed context containing only what that specific session needs; prior state documenting what earlier sessions produced; numbered execution directives with explicit file paths; mandatory verification commands; and a structured JSON handoff state.
Two rules govern session package content. First, packages specify interfaces and constraints, never implementation code. The agent is told what each file must export and what behaviour it must implement, but the actual code is left to the agent’s discretion. Empirically, AI agents produce higher-quality code when given constraints to satisfy rather than templates to fill in. Second, every package includes error cases: every function specification defines failure behaviour, every API route specifies error status codes, and every form includes validation rules.
2.4 Phase 4: Conflict Detection and Parallel Execution
Before any parallel sessions are approved, the methodology mandates a conflict detection step. The file set from each session’s execution directives is extracted, and the intersection between all sessions in the same execution layer is computed. If any intersection is non-empty, those sessions cannot run in parallel and must be serialised or restructured.
The result is published as a conflict matrix, providing a visual guarantee that parallel execution is safe. This step is mandatory, not optional. It eliminates an entire class of bugs that arise from concurrent file modification, a problem that plagues ad hoc parallel development approaches.
The execution itself uses a layer-sequential, session-parallel pattern. Within each layer, all sessions are dispatched as subagent tasks that run concurrently. The orchestrating agent waits for all sessions in a layer to complete and pass verification before advancing to the next layer. Critically, this all happens within a single agent instance using native subagent capabilities. No additional tooling, Docker containers, or multi-terminal setups are required. A real-world execution map for a complex project might look like this:
L0: S-01 → S-02 (sequential, foundation)
L1: S-03 | S-04 | S-05 | S-06 (4 parallel)
L2: S-07 | S-08 | S-09 (3 parallel)
L3: S-10 | S-11 | S-12 | S-13 | S-14 (5 parallel)
L4A: S-15 | S-16 | S-17 | S-18 (4 parallel, agents)
L4B: S-19 → S-20 | S-21 (1 then 2 parallel)
L5: S-22 | S-23 | S-24 | S-25 | S-26 | S-27 | S-28 (7 parallel)
L6: S-29 | S-30 | S-31 (3 parallel)
L7: S-32 | S-33 | S-34 (3 parallel)
This map represents 34 sessions across 8 execution layers, with up to 7 concurrent branches, all driven from a single entry point. The developer provides one prompt and watches as layers cascade through completion autonomously.
2.5 Phase 5: Verification, Recovery, and Iteration
Every session terminates with a mandatory verification block: type checking, linting, test execution, and a full build. A session is only considered complete when all verification commands pass with zero errors. If verification fails, the agent attempts up to two automated fix cycles before producing a structured failure report. Downstream sessions halt until their dependencies pass verification, preventing cascading failures.
For iteration after initial execution, GYSOM generates only delta sessions affecting the change. The project’s CLAUDE.md file is version-incremented, an iteration impact report identifies which sessions are affected versus unaffected, and a new execution map is produced showing only the sessions that need re-execution. Unaffected sessions and their outputs remain untouched.

3. CLAUDE.md as Ambient Context
A critical architectural decision in GYSOM is the separation of ambient context from execution directives. The project’s CLAUDE.md file serves as a single source of truth containing the tech stack, directory structure, coding standards, key commands, environment variables, git conventions, and all architecture decisions made during Phase 1.
CLAUDE.md is not a session prompt. It is automatically read by every agent session as background context, ensuring consistency without duplicating information across session packages. For large projects with five or more major domains, GYSOM splits this into domain-specific files (CLAUDE-FRONTEND.md, CLAUDE-BACKEND.md, CLAUDE-INFRA.md) so that backend sessions never waste context tokens reading frontend patterns and vice versa. Each session package header declares which context files it requires.

4. Positioning Within Context Engineering and Spec-Driven Development
The ecosystem around AI-assisted development has evolved rapidly through 2025 and into 2026, coalescing around two dominant paradigms: context engineering (the discipline of dynamically assembling the right information for an AI agent at the right time) and spec-driven development (writing comprehensive specifications upfront for agent implementation). GYSOM operates within both paradigms while introducing prompt compilation as a distinct pattern that neither fully addresses.
4.1 Native Agent Teams and Subagent Architectures
Anthropic’s Agent Teams feature enables multiple Claude Code instances to coordinate on shared repositories, with lead-agent orchestration and dependency ordering. Their engineering team demonstrated this at scale by having 16 agents build a Rust-based C compiler capable of compiling the Linux kernel, producing 100,000 lines of code across approximately 2,000 sessions. However, this approach required Docker containers per agent, a custom lock-file synchronisation algorithm, and a cost of approximately $20,000 in API usage.
GYSOM achieves a structurally similar orchestration pattern using nothing but prompt engineering and session sizing discipline, operating within a single agent instance. The infrastructure cost is zero because the methodology runs on vanilla Claude Code with no additional tooling.
4.2 Community Orchestration Tools
Open-source projects such as claude-swarm and claude-flow provide programmatic multi-agent orchestration with features including DAG decomposition, real-time file conflict detection, and budget enforcement. These tools require installation, configuration, and often depend on specific runtime environments.
GYSOM’s key differentiator is that it is tool-agnostic and universally accessible. Any developer with access to Claude Code (or any sufficiently capable AI coding agent) can adopt the methodology immediately. The barrier to entry is a text file, not a software dependency.
4.3 Context Management Best Practices
The community has developed various approaches to context window management: aggressive session clearing, the Fresh Context pattern (starting clean sessions per task), token reduction through lazy loading, and persistent memory files. Research from Arize demonstrated that optimised CLAUDE.md files alone yield measurable performance improvements.
GYSOM synthesises these insights into a formal framework with specific, testable constraints. Rather than general advice to keep sessions focused, GYSOM provides exact budgets: 25 files maximum, 2,500 words of directives, 300 words per file specification. These numbers are not arbitrary; they represent the empirically tested boundary at which Claude Code’s subagent architecture reliably completes sessions without context degradation.
4.4 Prompt Compilation: What Context Engineering and SDD Leave Unaddressed
Context engineering tells you to assemble the right information for your agent. Spec-driven development tells you to write comprehensive specifications upfront. Neither prescribes what happens next: how to decompose that specification into context-window-safe units, how to guarantee conflict-free parallel execution across those units, how to verify each unit independently, or how to manage structured state handoffs between them. Prompt compilation fills this gap. It is the pattern that takes a complete specification and compiles it into sized, verified, parallelisable session packages with formal conflict detection and structured handoff state. No published methodology combines all five of these contributions into a single system, and the unified compilation pipeline represents a novel extension of both context engineering and spec-driven development.

5. Prompt Compilation: A New Pattern in Context Engineering
Perhaps GYSOM’s most important contribution is conceptual rather than technical. Context engineering asks: how do you assemble the right information for an agent? Prompt compilation answers: you compile it. By reframing the AI coding agent as a compilation target rather than a conversational partner, the methodology shifts the developer’s role from interactive supervisor to compiler author. The developer’s job is not to guide the agent step by step but to provide a complete specification that compiles into autonomous execution.
This mental model has practical consequences. It naturally leads to better upfront planning because the developer knows they will not have another opportunity to provide input. It encourages explicit decision-making because ambiguity cannot be resolved mid-execution. It motivates thorough error case specification because the agent must handle failures without human intervention. And it makes parallel execution intuitive because the developer thinks in terms of dependency graphs rather than sequential task lists.
The name itself captures the philosophy. Get Your Skates On Mate is not a polite suggestion but a design constraint: once compilation starts, execution moves fast and the human is no longer in the loop. The methodology is optimised for speed, autonomy, and reliability, in that order.

6. Implementation Guide
GYSOM can be adopted incrementally. The methodology is delivered as two configuration files that work with Claude’s existing infrastructure.
6.1 Personal Preferences (Decision Harvesting Trigger)
A concise instruction set placed in the AI agent’s personal preferences or system prompt. This triggers the core behaviours: decision harvesting on project descriptions, session decomposition with size budgets, DAG-based parallel execution, CLAUDE.md generation, conflict detection, and the structured output sequence. It contains approximately 350 words and is designed to fit within the typical personal preferences token budget.
6.2 Global Instructions (Full Specification)
A comprehensive specification file placed at the project or global level that the agent reads as ambient context. This document (approximately 4,000 words) provides the complete methodology: the five-phase pipeline, session package format with all six mandatory sections, DAG rules, conflict detection protocol, verification success criteria, recovery protocol with auto-retry logic, iteration handling with delta sessions, session budget guidelines, anti-patterns, and the CLAUDE.md scaling strategy for large projects.
6.3 Adoption Path
For developers new to the methodology, the recommended path is to start with the Personal Preferences file alone. This is sufficient to trigger decision harvesting and basic session decomposition. Once comfortable with the workflow, adding the Global Instructions file enables the full specification including conflict matrices, handoff state schemas, and the complete verification and recovery protocol.

7. Limitations and Future Work
GYSOM currently assumes a single-developer workflow. While the session packages are theoretically distributable across team members, the methodology does not yet address multi-developer coordination, merge conflicts from parallel human work, or collaborative decision harvesting. Extending GYSOM for team use is a natural next step.
The session sizing constraints (25 files, 2,500 words) were empirically tested against Claude Code’s current architecture. These numbers will likely need recalibration as context windows expand and subagent capabilities evolve. The methodology should be treated as a living specification with version-controlled constraints.
Formal benchmarking against alternative approaches (multi-terminal execution, orchestration frameworks, conversational iteration) has not yet been conducted. Anecdotal evidence suggests substantial time savings, but rigorous measurement of completion time, error rates, and output quality across controlled project types would strengthen the methodology’s claims.

8. License and Availability
The GYSOM methodology, including the full specification, Personal Preferences file, and Global Instructions file, is released under the MIT License. This permits unrestricted use, modification, and distribution, including commercial use, with the sole requirement of attribution.
The complete specification, implementation files, and this publication are maintained at the project’s repository and are freely available for community adoption, contribution, and extension.

MIT License
Copyright (c) 2026 Mark Hallam
Permission is hereby granted, free of charge, to any person obtaining a copy of this
methodology and associated documentation files, to deal in the methodology without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies, subject to the above copyright notice and this
permission notice being included in all copies or substantial portions.

Acknowledgements
GYSOM was developed through extensive practical use of Anthropic’s Claude Code and Claude Cowork. The methodology builds upon publicly documented best practices from the Claude Code documentation, community contributions on context management and CLAUDE.md optimisation, and the broader ecosystem of AI-assisted development tooling. The author gratefully acknowledges the open-source community whose shared experimentation with AI coding agents made this synthesis possible.

GYSOM v1.0 • February 2026 • MIT License
Mark Hallam • markhallam1983@gmail.com
Page
